Spindle Positioning
 Spindle positioning system specifications -Option on all OmniTurns.

Spindle power:
Voltage:
Resolution:
Max Speed:
Min Speed:

5HP
200-230V 3 phase or single phase (contact the factory for wiring) .02
4000 rpm standard, 5000 optional
. 004 rpm

M19 programmed by itself causes the spindle to position via the shortest route to 0 . After the command is executed the spindle is locked in position. To release the spindle use M05. This is a one shot command, is modal.

CI(-)nnn.nn This makes the spindle move an incremental amount of degrees.
$\mathbf{C A}(-) \boldsymbol{n} \boldsymbol{n n} . \boldsymbol{n} \boldsymbol{n}$ This makes the spindle move to an absolute location of degrees.

Snnn.nn

The "S" number if programmed along with a M19 indicates the spindle speed in RPM. With no sign the spindle will rotate in the M03 direction. The "-"" sign will cause the spindle to rotate in the M04 direction.

G35/G36 -
(see notes in G33
section on use and formats)

Extra course long-lead ipr feeds. The G35 allows long lead ipr feeds. G35 sets Max feed rates to 1 ipr. G36 cancels G35. When G35 is active the system resolution drops to .00025 ". G35 may be activated any time. There is also a G35F2 mode for 2 "/rev feeds. Please refer to the threading section for details on format and use.

After G35 and G36 there must be a G92 command

NOTE: Both axes must be returned to the position they were in when the G35 was invoked before G36 is programmed. G35 must be canceled before a tool change!

Notes on use:

- Before a spindle positioning in absolute command can be executed there must be a M19 command to orient the spindle.
- Be sure that you calculate the amount of C needed for a coordinated C and Z move. In the following example there is not enough C given to complete the Z move, the slide will then hang up. A solution would be to increase C to 432 to complete the Z move.

Formula to find number of degrees needed $=$ the distance travel $\div I P R x 360$

G36
G92X0Z0

- Currently there is no feedback from the spindle drive that a move to a location has been completed.

When you rotate the spindle into position you will have to put a dwell after a rotation command to allow it time to complete the move.

Example showing positioning and cross drilling

In the following example we show a drill mounted on the slide.

The slide will be used to drill the holes. We will drill (4) holes 90 apart, the first hole is located at 27.5 from a reference 0

G90G94F300G73
T5(LIVE DRILL FROM THE SIDE)
X.75Z1

Z-. 3

M15(TURN DRILL ON)
M19
CA27.5
LS4
G94F1X. 5
X.75F300

CI90
G04F1
LF
Z3
M30

ORIENT THE SPINDLE TO 0
GOES TO 27.5 ABSOLUTE
START OF LOOP
DRILL A HOLE
ROTATE 90 INCREMENTALLY
DWELL TO ALLOW SPINDLE TO ROTATE
END OF LOOP

An example showing rotational milling

Here the cutter will go into the material and then make a combined C and Z move to create a slot. G90G94F300G73
T5(LIVE DRILL FROM THE SIDE)
X.75Z1

Z-. 2
G35
COARSE RESOLUTION MODE ON
G92X.75Z-. 2
M15(TURN DRILL ON) USER DEFINED M TO START LIVE TOOL
M19
ORIENT THE SPINDLE TO 0
X.5F1

G95F. 8
CA-45Z-.3S3.5 MILL WHILE MOVE 45 ROTATION AND .I" IN Z
X.75F300

M16 USER DEFINED M TO STOP LIVE TOOL
Z-. 2
NOTE THAT THIS WAS THE STARTING LOCATION
G36
G92X.75Z-. 2
G00Z2
M30

Spindle Positioning

